



Mark Scheme (Final)

January 2020

Pearson Edexcel International Advanced Level in Mechanics M2 (WME02/01)

### **Edexcel and BTEC Qualifications**

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <a href="https://www.edexcel.com">www.edexcel.com</a> or <a href="https://www.edexcel.com">www.btec.co.uk</a>. Alternatively, you can get in touch with us using the details on our contact us page at <a href="https://www.edexcel.com/contactus">www.edexcel.com/contactus</a>.

## Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2020
Publications Code WME02\_01\_MS\_2001
All the material in this publication is copyright
© Pearson Education Ltd 2020

## **General Marking Guidance**

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
   Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

### PEARSON EDEXCEL IAL MATHEMATICS

#### **General Instructions for Marking**

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:

### <u>'M' marks</u>

These are marks given for a correct method or an attempt at a correct method. In Mechanics they are usually awarded for the application of some mechanical principle to produce an equation.

e.g. resolving in a particular direction, taking moments about a point, applying a suvat equation, applying the conservation of momentum principle etc.

The following criteria are usually applied to the equation.

To earn the M mark, the equation

- (i) should have the correct number of terms
- (ii) be dimensionally correct i.e. all the terms need to be dimensionally correct e.g. in a moments equation, every term must be a 'force x distance' term or 'mass x distance', if we allow them to cancel 'g' s.

For a resolution, all terms that need to be resolved (multiplied by sin or cos) must be resolved to earn the M mark.

M marks are sometimes dependent (DM) on previous M marks having been earned. e.g. when two simultaneous equations have been set up by, for example, resolving in two directions and there is then an M mark for solving the equations to find a particular quantity – this M mark is often dependent on the two previous M marks having been earned.

#### 'A' marks

These are dependent accuracy (or sometimes answer) marks and can only be awarded if the previous M mark has been earned. E.g. MO A1 is impossible.

#### 'B' marks

These are independent accuracy marks where there is no method (e.g. often given for a comment or for a graph)

A few of the A and B marks may be f.t. – follow through – marks.

#### 3. General Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol  $\sqrt{\phantom{a}}$  will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- \* The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
  - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
  - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

# **General Principles for Mechanics Marking**

(But note that specific mark schemes may sometimes override these general principles)

- Rules for M marks: correct no. of terms; dimensionally correct; all terms that need resolving (i.e. multiplied by cos or sin) are resolved.
- Omission or extra g in a resolution is an accuracy error not method error.
- Omission of mass from a resolution is a method error.
- Omission of a length from a moments equation is a method error.
- Omission of units or incorrect units is not (usually) counted as an accuracy error.
- DM indicates a dependent method mark i.e. one that can only be awarded if a previous specified method mark has been awarded.
- Any numerical answer which comes from use of g = 9.8 should be given to 2 or 3 SF.
- Use of g = 9.81 should be penalised once per (complete) question.
  - N.B. Over-accuracy or under-accuracy of correct answers should only be penalised *once* per complete question. However, premature approximation should be penalised every time it occurs.

Marks must be entered in the same order as they appear on the mark scheme.

- In all cases, if the candidate clearly labels their working under a particular part of a question i.e. (a) or (b) or (c),.....then that working can only score marks for that part of the question.
- Accept column vectors in all cases.
- Misreads if a misread does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, bearing in mind that after a misread, the subsequent A marks affected are treated as A ft
- Mechanics Abbreviations
  - M(A) Taking moments about A.
  - N2L Newton's Second Law (Equation of Motion)
  - NEL Newton's Experimental Law (Newton's Law of Impact)
  - HL Hooke's Law
  - SHM Simple harmonic motion
  - PCLM Principle of conservation of linear momentum
  - RHS, LHS Right hand side, left hand side.



| Question<br>Number | Scheme                                                                                                                       | Marks |
|--------------------|------------------------------------------------------------------------------------------------------------------------------|-------|
| 1.                 | Use of $56 = FV$                                                                                                             | B1    |
|                    | Equation of motion                                                                                                           | M1    |
|                    | $F + 75g\sin\alpha - 40 = 75 \times \frac{1}{3}$                                                                             | A1    |
|                    | $\left(\frac{56}{V} = 65 - 49 = 16\right)$ $V = \frac{56}{16} = 3.5$                                                         | A1    |
|                    | $V = \frac{56}{16} = 3.5$                                                                                                    | A1    |
|                    | Notes                                                                                                                        | [5]   |
| B1<br>M1           | Require all terms. Dimensionally correct.(Omission of g is an accuracy error Condone sine / cosine confusion and sign errors | .)    |
| A1                 | Unsimplified equation with at most one error. In $F$ or in $V$ . Two signs inconsistent is 2 errors.                         |       |
| A1                 | Correct unsimplified equation. In $F$ or in $V$ .                                                                            |       |
| A1                 | Max 3 s.f Not $\frac{7}{2}$ Not $3\frac{1}{2}$                                                                               |       |
|                    |                                                                                                                              |       |
|                    |                                                                                                                              |       |

| Question<br>Number | Scheme                                                                                                                                                            | Marks            |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 2                  | Work energy equation KE lost = WD + PE gain                                                                                                                       | M1               |
|                    | $\frac{1}{2} \times 2 \times 16 = WD + 2g \times 2.5 \sin \theta$                                                                                                 | A1               |
|                    | (WD = 9)                                                                                                                                                          | A1               |
|                    | Use of $F = \mu \times 2g \cos \theta$                                                                                                                            | B1               |
|                    | Use of Work done = $2.5F$                                                                                                                                         | B1               |
|                    | $9 = 2.5 \times \mu \times 2g \cos \theta \implies \mu = 0.19$                                                                                                    | A1<br>(6)<br>[6] |
| M1                 | Must be using work-energy. Require all terms.  Dimensionally correct.  Allow their WD, but must be WD, not <i>F</i> Condone sine/cosine confusion and sign errors |                  |
| A1                 | Unsimplified equation with at most one error                                                                                                                      |                  |
| A1                 | Correct unsimplified equation NB: $16 = WD + 7$ seen scores 3 marks                                                                                               |                  |
| B1                 | $(F = \mu \times 19.398)$ Allow $\pm$<br>This mark is available if they use a <i>suvat</i> approach                                                               |                  |
| B1                 | Allow ±                                                                                                                                                           |                  |
| A1                 | Or 0.186. Max 3 sf. Not $\frac{3\sqrt{3}}{28}$                                                                                                                    |                  |
|                    |                                                                                                                                                                   |                  |

| Question<br>Number   | Scheme                                                                                                                                                                            | Marks    |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 3                    | Use of $m\mathbf{v} = \mathbf{I} + m\mathbf{u}$                                                                                                                                   | M1       |
|                      | Component of momentum parallel to original direction = $6 \times 0.75 + \sqrt{24} \cos 60 \ (= 4.5 + \sqrt{6})$                                                                   | A1<br>A1 |
|                      | Use of Pythagoras: $\left(\frac{3}{4}v\right) = \sqrt{\left(4.5 + \sqrt{6}\right)^2 + 18}$                                                                                        | M1       |
|                      | $v = 10.9 \text{ (m s}^{-1}), 11 \text{ (m s}^{-1})$                                                                                                                              | A1       |
|                      | Alternative for the 1st 5 marks:                                                                                                                                                  |          |
|                      | Vector triangle for impulses or velocities                                                                                                                                        | M1       |
|                      | Use of cosine rule                                                                                                                                                                | M1       |
|                      | $\left(\frac{3}{4}v\right)^2 = 4.5^2 + 24 - 2 \times 4.5 \times \sqrt{24} \times \cos 120^\circ$                                                                                  | A1       |
|                      |                                                                                                                                                                                   | A1       |
|                      | $v = 10.9 \text{ (m s}^{-1}), 11 \text{ (m s}^{-1})$                                                                                                                              | A1       |
|                      | Change in direction = $\tan^{-1} \frac{3\sqrt{2}}{4.5 + \sqrt{6}}$                                                                                                                | M1       |
|                      | $=31.4^{\circ} (31^{\circ})$                                                                                                                                                      | A1 (7)   |
|                      | Notes                                                                                                                                                                             | [7]      |
| M1<br>A1<br>M1<br>A1 | Need to consider both components. Or equivalent Or equivalent. Correct LHS Or better                                                                                              |          |
| M1<br>A1             | Must be using correct triangle - need 120° seen or implied Correct unsimplified                                                                                                   |          |
| A1<br>A1             | Or better Or equivalent use of trig. With their components to find the required angle                                                                                             |          |
| M1                   | Eg angle = $\cos^{-1}\left(\frac{4.5^2 + (mv)^2 - 24}{2 \times 4.5 \times (mv)}\right)$<br>Or from scalar product,<br>$\cos^{-1}\left(\frac{6 \times 9.27}{6 \times 10.9}\right)$ |          |
| A1                   | $6 \times 10.9$ 0.548 radians (0.55 radians) or better. Do not ISW                                                                                                                |          |

| Question<br>Number | Scheme                                                                                                                                                             | Marks           |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|                    |                                                                                                                                                                    |                 |
| 4(a)               | Moments about AC                                                                                                                                                   | M1              |
|                    | $18 \times \frac{3a}{2} - 2\pi \times \frac{8a}{3\pi} + 2\pi \left(3a + \frac{8a}{3\pi}\right) = 18\overline{y}$                                                   | A1              |
|                    | NB: valid to use $18 \times \frac{3a}{2} - 2\pi \times d + 2\pi (3a + d) = 18\overline{y}$ for $d \neq 0$ without                                                  |                 |
|                    | stating value for $d$<br>Use of $d = 0 \Rightarrow M0$                                                                                                             |                 |
|                    | $(27a + 6\pi a = 18\overline{y})$                                                                                                                                  | A1              |
|                    | The same incorrect distance used twice in place of $\frac{8a}{3\pi}$ is one error                                                                                  |                 |
|                    | The same incorrect area for the semicircle used twice is one error.<br>$27a + 6\pi a = 18\overline{y} \implies \overline{y} = \frac{9 + 2\pi}{6}a$ *               | A1 (4)          |
| 4b                 | $M \overline{x} + kM \times 6a = (1+k)M \overline{x}_T$                                                                                                            | M1              |
|                    | $3a + 6ak = (1+k)\overline{x}_T$ o.e.                                                                                                                              | A1              |
|                    | $M \overline{y} = (1+k) M \overline{y}_T$                                                                                                                          | M1              |
|                    | $(1+k)\overline{y}_T = \frac{9+2\pi}{6}a$                                                                                                                          | A1              |
| NB                 | For their second equation they could use $\tan \phi$ and their $\overline{x}_T$ or $\overline{y}_T$ to form an expression for $\overline{y}_T$ or $\overline{x}_T$ |                 |
|                    | $\tan \phi = \frac{3}{2} = \frac{\overline{x}_T}{\overline{y}_T} \implies \frac{3}{2} = \frac{6(3a + 6ak)}{(9 + 2\pi)a}$                                           | DM1             |
|                    | $\Rightarrow k = \frac{\pi}{12} - \frac{1}{8} \text{ or equivalent}$                                                                                               | A1 (6)          |
|                    | Notes                                                                                                                                                              |                 |
| M1                 | All terms. Dimensionally correct. Condone sign errors                                                                                                              | 1               |
| A1<br>A1           | Unsimplified equation with at most one error.  Correct unsimplified equation                                                                                       |                 |
| A1                 | Obtain <b>given answer</b> from sufficient correct exact working. Must see a separator $\overline{y}$ .                                                            | rate conclusion |
| NB                 | e.g. $\overline{y}_T = \frac{2(3+6k)a}{3(1+k)}$                                                                                                                    |                 |
| DM1                | Form equation in $k$ and solve for $k$ . Dependent on the previous 2 M marks.                                                                                      |                 |
| A1                 | k = 0.137 (0.14) or better See over for alternative solution to 4(b)                                                                                               |                 |

| Question<br>Number | Scheme                                                                                          | Marks  |
|--------------------|-------------------------------------------------------------------------------------------------|--------|
| 4(b)<br>alt        | Distance of original c of m from vertical through A                                             | M1     |
| art                | $\left(\frac{9+2\pi}{6}a-2a\right) \times \sin\phi \left(=\frac{\sqrt{13}(2\pi-3)a}{26}\right)$ | A1     |
|                    | Distance of additional particle from vertical through $A$                                       | M1     |
|                    | $6a \times \cos \phi \left( = \frac{12a}{\sqrt{13}} \right)$                                    | A1     |
|                    |                                                                                                 |        |
|                    | $mg \times \frac{\sqrt{13}(2\pi - 3)a}{26} = kmg \times \frac{12a}{\sqrt{13}}$                  | DM1    |
|                    | k = 0.137  (0.14)                                                                               | A1 (6) |
|                    |                                                                                                 |        |
| 2.00               | Notes                                                                                           | [10]   |
| M1                 |                                                                                                 |        |
| A1                 | Or equivalent                                                                                   |        |
| M1                 |                                                                                                 |        |
| 1.22               | Distance of additional particle from vertical through $A$                                       |        |
| M1<br>A1           | Distance of additional particle from vertical through $A$ Or equivalent                         |        |
| M1                 |                                                                                                 |        |
| M1<br>A1           | Or equivalent  Moments about A                                                                  |        |
| M1<br>A1<br>DM1    | Or equivalent  Moments about A  Dependent on the 2 previous M marks                             |        |

| Question<br>Number | Scheme                                                                                                                                                                                                  | Marks         |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 5a                 | Use of $\mathbf{a} = \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t}$ : $\mathbf{a} = 6t\mathbf{i} + 2\mathbf{j}$                                                                                              | M1            |
| Sa                 | $t = 0 \implies \mathbf{a} = 2\mathbf{j} \pmod{\mathrm{m}\mathrm{s}^{-2}}$                                                                                                                              | A1 (2)        |
|                    |                                                                                                                                                                                                         |               |
| 5b                 | $11(2t-4) = (3t^2-4)$                                                                                                                                                                                   | M1            |
|                    | $3t^2 - 22t + 40 = 0 \implies \left(t = \frac{10}{3}\right)t = 4$                                                                                                                                       | M1            |
|                    | $\mathbf{v} = 44\mathbf{i} + 4\mathbf{j}$ , speed = $\sqrt{44^2 + 4^2}$                                                                                                                                 | DM1           |
|                    | $=4\sqrt{122} \ (m \ s^{-1})$                                                                                                                                                                           | A1 (4)        |
| 5c                 | Use of $\mathbf{r} = \int \mathbf{v} dt$                                                                                                                                                                | M1            |
|                    | $\mathbf{r} = (t^3 - 4t)\mathbf{i} + (t^2 - 4t)\mathbf{j}$                                                                                                                                              | A1            |
|                    | Set $\mathbf{r} = 0$ and solve for $t$                                                                                                                                                                  | M1            |
|                    | $t^3 - 4t = 0 \implies t = 0, 2, (-2)$                                                                                                                                                                  |               |
|                    | $t^2 - 4t = 0 \implies t = 0, 4$                                                                                                                                                                        | A 1 * (4)     |
|                    | the only common value is $t = 0$ , so does not return to $O$ .*                                                                                                                                         | A1* (4)       |
|                    | Notes                                                                                                                                                                                                   | [10]          |
| 5a M1<br>A1        | Powers going down Must see vector answer but ISW if go on to state the magnitude.                                                                                                                       |               |
|                    |                                                                                                                                                                                                         |               |
| 5b M1              | Use of velocity parallel to $11\mathbf{i} + \mathbf{j}$ 11 must be on the correct side.                                                                                                                 |               |
| DM1                | Select the larger root (dependent on the previous 2 M1 marks and on 2 positiuse Pythagoras. Condone if they find both speeds                                                                            | ve roots) and |
| A1                 | Any equivalent simplified surd form $(\sqrt{1952})$ ISW                                                                                                                                                 |               |
|                    | 44.18 implies M1 if correct surd form not seen. Both values for speed given is A0                                                                                                                       |               |
| M1                 | Powers going up                                                                                                                                                                                         |               |
| A1<br>M1           | If a constant of integration is introduced, they must conclude it is equal to the zero vector Consider both components                                                                                  |               |
| A1*                | Or equivalent clear explanation of <b>given result</b> . Condone if they ignore $t = 0$ . Do not need to see the roots. But do need to see the factorised form for each component if using this method. |               |
|                    |                                                                                                                                                                                                         |               |
|                    |                                                                                                                                                                                                         |               |

| Question<br>Number     | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Marks                   |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| 6a                     | Resolve vertically $ \uparrow R + N \cos \alpha = W $ Take moments about $A$ $ 7aN = 4a \cos \alpha \times W $ Obtain equation in $R$ , $W$ and $\alpha$ $ N = W \times \frac{4}{7} \cos \alpha \implies \\ R = W - \frac{4}{7} W \cos^2 \alpha \implies \\ = W \left(1 - \frac{4}{7} \cos^2 \alpha\right) *$ Alternative equations $ R \sin \alpha + F \cos \alpha = W \sin \alpha \\ N + R \cos \alpha = W \cos \alpha + F \sin \alpha \\ W \cdot 3a \cos \alpha + F \cdot 7a \sin \alpha = R \cdot 7a \cos \alpha $ First 4 marks for alternative methods | M1 A1 M1 A1 DM1 A1* (6) |
| 6a M1                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DM1<br>A1* (6)          |
| <b>A1</b>              | Correct unsimplified equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| M1<br>A1<br>DM1<br>A1* | Correct unsimplified equation Solve for <i>R</i> in terms of <i>W</i> . Dependent on the 2 preceding M marks Obtain <b>given answer</b> from correct working                                                                                                                                                                                                                                                                                                                                                                                                 |                         |
| Alt:                   | Parallel to the rod Perpendicular to the rod Moments about C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |
| M1                     | Equation in <i>R</i> . All terms needed. Condone sin/cos confusion and sign errors                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |
| <b>A1</b>              | Correct unsimplified equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| M1<br>A1               | Sufficient additional equations to solve for <i>R</i> in terms of <i>W</i> . Dimensionally c terms needed. Condone sin/cos confusion and sign errors Correct unsimplified equation                                                                                                                                                                                                                                                                                                                                                                           | orrect. All             |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                               | Marks                          |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| 6b                 | $R = W \left( 1 - \frac{4}{7} \times \frac{9}{10} \right) = \frac{17W}{35}$ Resolve horizontally $F = N \sin \alpha = \frac{4}{7} \times \frac{3}{\sqrt{10}} \times \frac{1}{\sqrt{10}} W$ $\left( = \frac{6}{35} W \right)$ Use of $F \le \mu R$ $\Rightarrow \mu \ge \frac{6}{17}$ | B1<br>M1<br>A1<br>M1<br>A1 (5) |
|                    | Notes                                                                                                                                                                                                                                                                                | [11]                           |
| 6b B1<br>M1        | Seen or implied Obtain equation in                                                                                                                                                                                                                                                   |                                |
| A1                 | Correct unsimplified equation in $F$ and $W$ (trig. substituted) $(0.171W)$                                                                                                                                                                                                          |                                |
| M1                 | Correct method to find the critical value. Condone with any symbol.                                                                                                                                                                                                                  |                                |
| A1                 | 0.35 or better (0.3529) from correct working Final answer. Do not ISW                                                                                                                                                                                                                |                                |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Marks             |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 7a                 | NB: sine/cosine confusion is not condoned in projectile questions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M1                |
|                    | Use of conservation of energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |
|                    | $\frac{1}{2}m \times 25^2 = \frac{1}{2}m \times 15^2 + mgh$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A1                |
|                    | $\Rightarrow h = 20 \text{ or } 20.4 \text{ (m)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A1 (3)            |
| <b>7</b> b         | Vertical distance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M1                |
|                    | $20.4 = 25 \sin \alpha \times 3 - 4.5 \times 9.8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A1ft              |
|                    | $\alpha = 59^{\circ} \text{ or } 59.3^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A1 (3)            |
| 7c                 | Horizontal component of speed is constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M1                |
|                    | $\Rightarrow 25\cos\alpha = 15\cos\beta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A1ft              |
|                    | $\beta = 32^{\circ} \text{ or } 31.8^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A1 (3)            |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 7c alt             | Vertical distance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M1                |
| /c ait             | $20.4 = -15\sin\beta \times 3 + 4.5 \times 9.8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A1ft              |
|                    | $\beta = 32^{\circ} \text{ or } 31.8^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A1 (3)            |
|                    | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
| 7a M1              | Need energy equation with all 3 terms. Must be dimensionally correct. Cond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | lone sign errors. |
| A1                 | Correct unsimplified equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |
| <b>A1</b>          | Max 3 sf Not $\frac{1000}{49}$ nor $\frac{200}{g}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |
|                    | 49 g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |
| 7b M1              | Use of <i>suvat</i> to find $\alpha$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |
| A1ft               | Correct unsimplified equation in their h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |
| A1<br>7c M1        | 0.554 rads. Max 3 sf From CWO Or horizontal distance travelled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |
| A1ft               | Correct unsimplified in $\alpha$ or their $\alpha$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |
| A1tt               | 0.554 rads. Max 3 sf From CWO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |
|                    | The state of the s |                   |
| 7c alt             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| <b>M</b> 1         | Use of <i>suvat</i> to find $\beta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |
|                    | e.g. using $s = vt - \frac{1}{2}gt^2$ . Correct unsimplified equation in their h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |
| A1ft               | 2 gr . Control anomphiles equation in them h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |
| A1                 | 0.554 rads. Max 3 sf From CWO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |

| Question<br>Number  | Scheme                                                                                                                                  | Marks                |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 7d                  | Min speed = horizontal component = $25 \cos \alpha (= 15 \cos \beta)$<br>= $13 \text{ or } 12.8 \text{ (m s}^{-1})$                     | M1<br>A1 (2)         |
| 7e                  | By considering vertical component of speed at B: $15\sin 31.8^{\circ} - gT = -15\sin 31.8^{\circ}$<br>T = 1.6  or  1.61  (s)            | M1<br>A1ft<br>A1 (3) |
|                     | Notes                                                                                                                                   | [14]                 |
| 7d M1<br>A1         | Follow their angle. Must show working if using incorrect angle.  Max 3 sf From CWO                                                      |                      |
| 7e M1<br>A1ft<br>A1 | Complete method using <i>suvat</i> to find <i>T</i> Correct unsimplified equation in <i>T</i> - follow their angles.  Max 3 sf From CWO |                      |

| Question<br>Number               | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Marks              |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 8                                | $ \begin{array}{cccc} & & & & \\ & & & \\ 2u & & 3u & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$ |                    |
|                                  | Change in KE $\frac{4m}{2} \left( 4u^2 - v^2 \right) + \frac{3m}{2} \left( 9u^2 - w^2 \right) = \frac{473}{24} mu^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M1<br>A1           |
|                                  | $(48v^2 + 36w^2 = 43u^2)$<br>Equation for CLM<br>Need all terms. Dimensionally correct. Condone sign errors.<br>8mu - 9mu = -4mv + 3mw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M1<br>A1           |
|                                  | (u = 4v - 3w)<br>Impact law                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M1<br>A1           |
|                                  | $w + v = 5eu$ $48v^{2} + 36\left(\frac{4v - u}{3}\right)^{2} = 43u^{2} \text{ Or } 48\left(\frac{u + 3w}{4}\right)^{2} + 36w^{2} = 43u^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DM1                |
|                                  | Or $\frac{48}{49}(1+15e)^2 + \frac{36}{49}(20e-1)^2 = 43$<br>$112v^2 - 32uv - 39u^2 = 0$ $= (4v - 3u)(28v + 13u)$ Or $63w^2 + 18uw - 40u^2 = 0$ $= (21w + 20u)(3w - 2u)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DM1                |
|                                  | $Or 25200e^2 = 2023$ Notes  The first 8 marks are available if they have ignored the information about the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e final directions |
| M1<br>A1<br>M1<br>A1<br>M1<br>A1 | Work with their directions. Ignore the diagram if that is to the candidate's a Need all terms. Dimensionally correct. Accept $\pm$ Correct unsimplified equation in $v$ , $w$ or their $v$ , $w$ Need all terms. Dimensionally correct. Condone sign errors. Correct unsimplified equation with their correct signs Must be used the right way round Or equivalent in their $w$ , $v$ . Signs for $v$ , $w$ consistent with CLM eqn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | dvantage.          |
| DM1<br>DM1                       | Form equation for <i>v</i> or <i>w</i> or <i>e</i> Dependent on M marks scored for the equations used.  Solve for <i>v</i> or <i>w</i> or <i>e</i> . Dependent on the preceding M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |

| Question<br>Number | Scheme                                                                                                         | Marks          |
|--------------------|----------------------------------------------------------------------------------------------------------------|----------------|
|                    |                                                                                                                |                |
| 8                  | $v = \frac{3u}{4}  w = \frac{2u}{3}$ $\frac{3u}{4} + \frac{2u}{3} = 5eu, \ e = \frac{17}{60}$                  | A1<br>A1       |
|                    | Use of $I = m(v - u)$ $4m\left(2u + \frac{3u}{4}\right) = 11mu$                                                | DM1<br>A1 (12) |
|                    |                                                                                                                |                |
|                    | Notes                                                                                                          | [12]           |
| A1                 | v or w correct                                                                                                 |                |
| A1                 | $\frac{3u}{4} + \frac{2u}{3} = 5eu$                                                                            |                |
| DM1                | Must be attempting to subtract corresponding values for <i>u</i> and <i>v</i> Dependent on the first 4 M marks |                |
| <b>A1</b>          | Or $3m\left(3u + \frac{2u}{3}\right)$ from correct solution only                                               |                |
|                    |                                                                                                                |                |
|                    |                                                                                                                |                |
|                    |                                                                                                                |                |
|                    |                                                                                                                |                |
|                    |                                                                                                                |                |
|                    |                                                                                                                |                |

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom